Package: gbm 2.2.2
gbm: Generalized Boosted Regression Models
An implementation of extensions to Freund and Schapire's AdaBoost algorithm and Friedman's gradient boosting machine. Includes regression methods for least squares, absolute loss, t-distribution loss, quantile regression, logistic, multinomial logistic, Poisson, Cox proportional hazards partial likelihood, AdaBoost exponential loss, Huberized hinge loss, and Learning to Rank measures (LambdaMart). Originally developed by Greg Ridgeway. Newer version available at github.com/gbm-developers/gbm3.
Authors:
gbm_2.2.2.tar.gz
gbm_2.2.2.zip(r-4.5)gbm_2.2.2.zip(r-4.4)gbm_2.2.2.zip(r-4.3)
gbm_2.2.2.tgz(r-4.5-x86_64)gbm_2.2.2.tgz(r-4.5-arm64)gbm_2.2.2.tgz(r-4.4-x86_64)gbm_2.2.2.tgz(r-4.4-arm64)gbm_2.2.2.tgz(r-4.3-x86_64)gbm_2.2.2.tgz(r-4.3-arm64)
gbm_2.2.2.tar.gz(r-4.5-noble)gbm_2.2.2.tar.gz(r-4.4-noble)
gbm_2.2.2.tgz(r-4.4-emscripten)gbm_2.2.2.tgz(r-4.3-emscripten)
gbm.pdf |gbm.html✨
gbm/json (API)
NEWS
# Install 'gbm' in R: |
install.packages('gbm', repos = c('https://gbm-developers.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/gbm-developers/gbm/issues
Last updated 8 months agofrom:59cc7a9592. Checks:1 OK, 10 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Feb 10 2025 |
R-4.5-win-x86_64 | NOTE | Feb 10 2025 |
R-4.5-mac-x86_64 | NOTE | Feb 10 2025 |
R-4.5-mac-aarch64 | NOTE | Feb 10 2025 |
R-4.5-linux-x86_64 | NOTE | Feb 10 2025 |
R-4.4-win-x86_64 | NOTE | Feb 10 2025 |
R-4.4-mac-x86_64 | NOTE | Feb 10 2025 |
R-4.4-mac-aarch64 | NOTE | Feb 10 2025 |
R-4.3-win-x86_64 | NOTE | Feb 10 2025 |
R-4.3-mac-x86_64 | NOTE | Feb 10 2025 |
R-4.3-mac-aarch64 | NOTE | Feb 10 2025 |
Exports:basehaz.gbmcalibrate.plotcheckIDcheckMissingcheckOffsetcheckWeightsgbmgbm.concgbm.fitgbm.lossgbm.moregbm.perfgbm.roc.areagbmClustergbmCrossValgbmCrossValErrgbmCrossValModelBuildgbmCrossValPredictionsgbmDoFoldgetCVgroupgetStratifygetVarNamesguessDistinteract.gbmir.measure.aucir.measure.concir.measure.mapir.measure.mrrir.measure.ndcgperf.pairwisepermutation.test.gbmplot.gbmpredict.gbmpretty.gbm.treequantile.rugreconstructGBMdatarelative.influenceshow.gbmsummary.gbmtest.gbmtest.relative.influencevalidate.gbm